1. Prasad, B. S., Gupta, S., Borah, N., Dineshkumar, R., Lautre, H. K., & Mouleswararao, B. (2023). Predicting diabetes with multivariate analysis an innovative KNN-based classifier approach. Preventive Medicine, 174, 107619.
2. Prasad, B. V. V. S., and Sheba Angel. “Predicting future resource requirement for efficient resource management in cloud.” International Journal of Computer Applications 101, no. 15 (2014): 19-23.
3. Prasad, B. V., and S. Salman Ali. “Software–defined networking based secure rout-ing in mobile ad hoc network.” International Journal of Engineering & Technology 7.1.2 (2017): 229.
4. Alapati, N., Prasad, B. V. V. S., Sharma, A., Kumari, G. R. P., Veeneetha, S. V., Srivalli, N., … & Sahitya, D. (2022, November). Prediction of Flight-fare using machine learning. In 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP) (pp. 134-138). IEEE.
5. Kumar, B. R., Ashok, G., & Prasad, B. S. (2015). Tuning PID Controller Parameters for Load Frequency Control Considering System Uncertainties. Int. Journal of Engineering Research and Applications, 5(5), 42-47.
6. Ali, S. S., & Prasad, B. V. V. S. (2017). Secure and energy aware routing protocol (SEARP) based on trust-factor in Mobile Ad-Hoc networks. Journal of Statistics and Management Systems, 20(4), 543–551. https://doi.org/10.1080/09720510.2017.1395174
7. Onyema, E. M., Balasubaramanian, S., Iwendi, C., Prasad, B. S., & Edeh, C. D. (2023). Remote monitoring system using slow-fast deep convolution neural network model for identifying anti-social activities in surveillance applications. Measurement: Sensors, 27, 100718.
8. Syed, S. A., & Prasad, B. V. V. S. (2019, April). Merged technique to prevent SYBIL Attacks in VANETs. In 2019 International Conference on Computer and Information Sciences (ICCIS) (pp. 1-6). IEEE.
9. Patil, P. D., & Chavan, N. (2014). Proximate analysis and mineral characterization of Barringtonia species. International Journal of Advances in Pharmaceutical Analysis, 4(3), 120-122.
10. Desai, Mrunalini N., Priya D. Patil, and N. S. Chavan. “ISOLATION AND CHARACTERIZATION OF STARCH FROM MANGROVES Aegiceras corniculatum (L.) Blanco and Cynometra iripa Kostel.” (2011).
11. Patil, P. D., Gokhale, M. V., & Chavan, N. S. (2014). Mango starch: Its use and future prospects. Innov. J. Food Sci, 2, 29-30.
12. Priya Patil, D., N. S. Chavan, and B. S. Anjali. “Sonneratia alba J. Smith, A Vital Source of Gamma Linolenic Acid (GLA).” Asian J Pharm Clin Res 5.1 (2012): 172-175.
13. Priya, D., Patil, A., Niranjana, S., & Chavan, A. (2012). Potential testing of fatty acids from mangrove Aegiceras corniculatum (L.) Blanco. Int J Pharm Sci, 3, 569-71.
14. Priya, D., Patil, A., Niranjana, S., & Chavan, A. (2012). Potential testing of fatty acids from mangrove Aegiceras corniculatum (L.) Blanco. Int J Pharm Sci, 3, 569-71.
15. Patil, Priya D., and N. S. Chavan. “A comparative study of nutrients and mineral composition of Carallia brachiata (Lour.) Merill.” International Journal of Advanced Science and Research 1 (2015): 90-92.
16. Patil, P. D., & Chavan, N. S. (2013). A need of conservation of Bruguiera species as a famine food. Annals Food Science and Technology, 14, 294-297.
17. Bharathi, G. P., Chandra, I., Sanagana, D. P. R., Tummalachervu, C. K., Rao, V. S., &Neelima, S. (2024). AI-driven adaptive learning for enhancing business intelligence simulation games. Entertainment Computing, 50, 100699.
18. Nagarani, N., et al. “Self-attention based progressive generative adversarial network optimized with momentum search optimization algorithm for classification of brain tumor on MRI image.” Biomedical Signal Processing and Control 88 (2024): 105597.
19. Reka, R., R. Karthick, R. Saravana Ram, and Gurkirpal Singh. “Multi head self-attention gated graph convolutional network based multi‑attack intrusion detection in MANET.” Computers & Security 136 (2024): 103526.
20. Meenalochini, P., R. Karthick, and E. Sakthivel. “An Efficient Control Strategy for an Extended Switched Coupled Inductor Quasi-Z-Source Inverter for 3 Φ Grid Connected System.” Journal of Circuits, Systems and Computers 32.11 (2023): 2450011.
21. Karthick, R., et al. “An optimal partitioning and floor planning for VLSI circuit design based on a hybrid bio-inspired whale optimization and adaptive bird swarm optimization (WO-ABSO) algorithm.” Journal of Circuits, Systems and Computers 32.08 (2023): 2350273.
22. Jasper Gnana Chandran, J., et al. “Dual-channel capsule generative adversarial network optimized with golden eagle optimization for pediatric bone age assessment from hand X-ray image.” International Journal of Pattern Recognition and Artificial Intelligence 37.02 (2023): 2354001.
23. Rajagopal RK, Karthick R, Meenalochini P, Kalaichelvi T. Deep Convolutional Spiking Neural Network optimized with Arithmetic optimization algorithm for lung disease detection using chest X-ray images. Biomedical Signal Processing and Control. 2023 Jan 1;79:104197.
24. Karthick, R., and P. Meenalochini. “Implementation of data cache block (DCB) in shared processor using field-programmable gate array (FPGA).” Journal of the National Science Foundation of Sri Lanka 48.4 (2020).
25. Karthick, R., A. Senthilselvi, P. Meenalochini, and S. Senthil Pandi. “Design and analysis of linear phase finite impulse response filter using water strider optimization algorithm in FPGA.” Circuits, Systems, and Signal Processing 41, no. 9 (2022): 5254-5282.
26. Karthick, R., and M. Sundararajan. “SPIDER-based out-of-order execution scheme for HtMPSOC.” International Journal of Advanced Intelligence paradigms 19.1 (2021): 28-41.
27. Karthick, R., Dawood, M.S. & Meenalochini, P. Analysis of vital signs using remote photoplethysmography (RPPG). J Ambient Intell Human Comput 14, 16729–16736 (2023). https://doi.org/10.1007/s12652-023-04683-w
28. Selvan, M. A., & Amali, S. M. J. (2024). RAINFALL DETECTION USING DEEP LEARNING TECHNIQUE.
29. Alapati, N., Prasad, B. V. V. S., Sharma, A., Kumari, G. R. P., Veeneetha, S. V., Srivalli, N., … & Sahitya, D. (2022, November). Prediction of Flight-fare using machine learning. In 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP) (pp. 134-138). IEEE.
30. Siva Prasad, B. V. V., Sucharitha, G., Venkatesan, K. G. S., Patnala, T. R., Murari, T., & Karanam, S. R. (2022). Optimisation of the Execution Time Using Hadoop-Based Parallel Machine Learning on Computing Clusters. In Computer Networks, Big Data and IoT: Proceedings of ICCBI 2021 (pp. 233-244). Singapore: Springer Nature Singapore.
Page No: 76-83
Abstract : Cloud computing has become an essential component of enterprises and organizations globally in the current era of digital technology. The cloud has a multitude of advantages, including scalability, flexibility, and cost-effectiveness, rendering it an appealing choice for data storage and processing. The increasing storage of sensitive information in cloud environments has raised significant concerns over the security of such systems. The frequency of cyber threats and attacks specifically aimed at cloud infrastructure has been increasing, presenting substantial dangers to the data, reputation, and financial stability of enterprises. Conventional security methods can become inadequate when confronted with ever intricate and dynamic threats. Artificial Intelligence (AI) technologies possess the capacity to significantly transform cloud security through their ability to promptly identify and thwart assaults, adjust to emerging risks, and offer intelligent perspectives for proactive security actions. The objective of this research study is to investigate the utilization of AI technologies in augmenting the security measures within cloud computing systems. This paper aims to offer significant insights and recommendations for businesses seeking to protect their cloud-based assets by analyzing the present state of cloud security, the capabilities of AI, and the possible advantages and obstacles associated with using AI into cloud security policies.
Keyword Cloud computing, Artificial Intelligence & cloud security policies
Reference: