1. Ramesh, G., Gorantla, V. A. K., & Gude, V. (2023). A hybrid methodology with learning based approach for protecting systems from DDoS attacks. Journal of Discrete Mathematical Sciences and Cryptography, 26(5), 1317-1325.
2. Logeshwaran, J., Gorantla, V. A. K., Gude, V., & Gorantla, B. (2023, September). The Smart Performance Analysis of Cyber Security Issues in Crypto Currency Using Blockchain. In 2023 6th International Conference on Contemporary Computing and Informatics (IC3I) (Vol. 6, pp. 2235-2241). IEEE.
3. Komatireddy, S. R., Meghana, K., Gude, V., & Ramesh, G. (2023, December). Facial Shape Analysis and Accessory Recommendation: A Human-Centric AI Approach. In 2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA) (pp. 182-191). IEEE.
4. Sriramulugari, S. K., Gorantla, V. A. K., Gude, V., Gupta, K., & Yuvaraj, N. (2024, March). Exploring mobility and scalability of cloud computing servers using logical regression framework. In 2024 2nd International Conference on Disruptive Technologies (ICDT) (pp. 488-493). IEEE.
5. Gorantla, V. A. K., Gude, V., Sriramulugari, S. K., Yuvaraj, N., & Yadav, P. (2024, March). Utilizing hybrid cloud strategies to enhance data storage and security in e-commerce applications. In 2024 2nd International Conference on Disruptive Technologies (ICDT) (pp. 494-499). IEEE.
6. Bharathi, G. P., Chandra, I., Sanagana, D. P. R., Tummalachervu, C. K., Rao, V. S., & Neelima, S. (2024). AI-driven adaptive learning for enhancing business intelligence simulation games. Entertainment Computing, 50, 100699.
7. Sanagana, D. P. R., & Tummalachervu, C. K. (2024, May). Securing Cloud Computing Environment via Optimal Deep Learning-based Intrusion Detection Systems. In 2024 Second International Conference on Data Science and Information System (ICDSIS) (pp. 1-6). IEEE.
8. Thangapalani, L., Dharini, R., & Keerthana, R. (2023, May). Securing Medical Image Transmission using Memetic Algorithm. In 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) (pp. 1-8). IEEE.
9. Vennila, D., Vinotha, C., Shanthakumari, A., & Thangapalani, L. Convex Optimization Algorithm for Product Recommendation Using Microblogging Information. Journal of Data Mining and Management, 2(1).
10. Mukati, N., Namdev, N., Dilip, R., Hemalatha, N., Dhiman, V., & Sahu, B. (2023). Healthcare assistance to COVID-19 patient using internet of things (IoT) enabled technologies. Materials today: proceedings, 80, 3777-3781.
11. Bansal, B., Jenipher, V. N., Jain, R., Dilip, R., Kumbhkar, M., Pramanik, S., … & Gupta, A. (2022). Big data architecture for network security. Cyber Security and Network Security, 233-267.
12. Shrivastava, A., Nayak, C. K., Dilip, R., Samal, S. R., Rout, S., & Ashfaque, S. M. (2023). Automatic robotic system design and development for vertical hydroponic farming using IoT and big data analysis. Materials Today: Proceedings, 80, 3546-3553.
13. Pandey, J. K., Jain, R., Dilip, R., Kumbhkar, M., Jaiswal, S., Pandey, B. K., … & Pandey, D. (2022). Investigating role of iot in the development of smart application for security enhancement. In IoT Based Smart Applications (pp. 219-243). Cham: Springer International Publishing.
14. Gupta, N., Janani, S., Dilip, R., Hosur, R., Chaturvedi, A., & Gupta, A. (2022). Wearable sensors for evaluation over smart home using sequential minimization optimization-based random forest. International Journal of Communication Networks and Information Security, 14(2), 179-188.
15. Gite, P., Shrivastava, A., Krishna, K. M., Kusumadevi, G. H., Dilip, R., & Potdar, R. M. (2023). Under water motion tracking and monitoring using wireless sensor network and Machine learning. Materials Today: Proceedings, 80, 3511-3516.
16. Dilip, R., & Bhagirathi, V. (2013). Image processing techniques for coin classification using LabVIEW. OJAI 2013, 1(1), 13-17.
17. Krishna, K. M., Borole, Y. D., Rout, S., Negi, P., Deivakani, M., & Dilip, R. (2021, September). Inclusion of cloud, blockchain and iot based technologies in agriculture sector. In 2021 9th international conference on cyber and IT service management (CITSM) (pp. 1-8). IEEE.
18. Dilip, R. (2019). DESIGN AND DEVELOPMENT OF INTELLIGENT SYSTEM FOR HUMAN BODY DESIGN AND DEVELOPMENT OF INTELLIGENT SYSTEM FOR HUMAN BODY. no. July, 0-3.
19. Veeraiah, V., Thejaswini, K. O., Dilip, R., Jain, S. K., Sahu, A., Pramanik, S., & Gupta, A. (2024). The Suggested Use of Big Data in Medical Analytics by Fortis Healthcare Hospital. In Adoption and Use of Technology Tools and Services by Economically Disadvantaged Communities: Implications for Growth and Sustainability (pp. 275-289). IGI Global.
20. Dilip, R., Milan, R. K., Vajrangi, A., Chavadi, K. S., & Puneeth, A. S. (2021, November). Jumping robot: a pneumatic jumping locomotion across rough terrain. In Journal of Physics: Conference Series (Vol. 2115, No. 1, p. 012008). IOP Publishing.
21. Dilip, R., Borole, Y. D., Sumalatha, S., & Nethravathi, H. M. (2021, September). Speech based biomedical devices monitoring using LabVIEW. In 2021 9th International Conference on Cyber and IT Service Management (CITSM) (pp. 1-7). IEEE.
22. Rekha, C. M., Shivakumar, K. S., & Dilip, R. (2020, October). Comparison of spacefactor, capacitance value and impregnated temperature in mpp oil impregnated polypropylene film AC capacitors. In 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE) (pp. 544-547). IEEE.
23. Dilip, R., & Bhagirathi, V. (2013). LAN Based Industrial Automation with GSM Connectivity. ICSEM-2013 Conference Proceedings.
24. Janani, S., Dilip, R., Talukdar, S. B., Talukdar, V. B., Mishra, K. N., & Dhabliya, D. (2023). IoT and Machine Learning in Smart City Healthcare Systems. In Handbook of Research on Data-Driven Mathematical Modeling in Smart Cities (pp. 262-279). IGI Global.
25. Dilip, R., Solabagoudar, M. P., Chapi, N., & Vaidya, P. B. (2023). A Review of Surveillance and Fire Fighter Drone. International Journal of Unmanned Systems Engineering, 5(2), 123-145.
26. Janani, S., Dilip, R., Talukdar, S. B., Talukdar, V. B., Mishra, K. N., & Dhabliya, D. (2023). IoT and Machine Learning in Smart City Healthcare Systems. In Handbook of Research on Data-Driven Mathematical Modeling in Smart Cities (pp. 262-279). IGI Global.
27. Dilip, R., & Ramesh, K. B. (2020). Development of Graphical System for Patient Monitoring using Cloud Computing.
28. Mathuravalli, S. M. D., Narayanansamy Rajendran, D. K. B., Dilip, R., Ranjan, A., Das, I., & Chauhan, A. (2023). Deep Learning Techniques For Exoticism Mining From Visual Content Based Image Retrieval. Journal of Pharmaceutical Negative Results, 925-933.
29. Dilip, R., Samanvita, N., Pramodhini, R., Vidhya, S. G., & Telkar, B. S. (2022, February). Performance Analysis of Machine Learning Algorithms in Intrusion Detection and Classification. In International Conference on Emerging Technologies in Computer Engineering (pp. 283-289). Cham: Springer International Publishing.
30. Rekha, K. S., Amali, M. J., Swathy, M., Raghini, M., & Darshini, B. P. (2023). A steganography embedding method based on CDF-DWT technique for data hiding application using Elgamal algorithm. Biomedical Signal Processing and Control, 80, 104212.
31. Selvan, M. A., & Amali, S. M. J. (2024). RAINFALL DETECTION USING DEEP LEARNING TECHNIQUE.
32. Sashi Rekha, K., & Miruna Joe Amali, S. A. (2022). Efficient feature subset selection and classification using levy flightâbased cuckoo search optimization with parallel support vector machine for the breast cancer data. International Journal of Imaging Systems and Technology, 32(3), 869-881.
33. Kirubahari, R., & Amali, S. M. J. (2024). An improved restricted Boltzmann machine using Bayesian optimization for recommender systems. Evolving Systems, 15(3), 1099-1111.
34. Kiran, A., Kalpana, V., Madanan, M., Ramesh, J. V. N., Alfurhood, B. S., & Mubeen, S. (2023). Anticipating network failures and congestion in optical networks a data analytics approach using genetic algorithm optimization. Optical and Quantum Electronics, 55(13), 1193.
35. Lalithambigai, M., Kalpana, V., Kumar, A. S., Uthayakumar, J., Santhosh, J., & Mahaveerakannan, R. (2023, February). Dimensionality reduction with DLMNN technique for handling secure medical data in healthcare-IoT model. In 2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS) (pp. 111-117). IEEE.
36. Kalpana, V., Mishra, D. K., Chanthirasekaran, K., Haldorai, A., Nath, S. S., & Saraswat, B. K. (2022). On reducing energy cost consumption in heterogeneous cellular networks using optimal time constraint algorithm. Optik, 270, 170008.
37. Kalpana, V., & Karthik, S. (2020). Route availability with QoE and QoS metrics for data analysis of video stream over a mobile ad hoc networks. Wireless Personal Communications, 114(3), 2591-2612.
38. Kalpana, V., & Karthik, S. (2018, February). Bandwidth Constrained Priority Based Routing Algorithm for Improving the Quality of Service in Mobile Ad hoc Networks. In 2018 International Conference on Soft-computing and Network Security (ICSNS) (pp. 1-8). IEEE.
Page No: 369 - 376
Abstract : In modern data centers, managing the distribution of workloads efficiently is crucial for ensuring optimal performance and meeting Service Level Agreements (SLAs). Load balancing algorithms play a vital role in this process by distributing workloads across computing resources to avoid overloading any single resource. However, the effectiveness of these algorithms can be significantly enhanced through the integration of advanced optimization techniques. This paper proposes an SLA-driven load balancing algorithm optimized using methods such as genetic algorithms, particle swarm optimization, and simulated annealing. By focusing on both resource utilization and SLA compliance, the proposed approach aims to reduce latency, improve throughput, and maximize overall system efficiency. The research introduces a novel framework that incorporates real-time monitoring, dynamic resource allocation, and adaptive threshold settings to ensure consistent SLA adherence while optimizing computing performance. Extensive simulations are conducted using synthetic and real-world datasets to evaluate the performance of the proposed algorithm. The results demonstrate that the optimized load balancing approach outperforms traditional algorithms in terms of SLA compliance, resource utilization, and energy efficiency. The findings suggest that the integration of optimization techniques into load balancing algorithms can significantly enhance the operational efficiency of data centers, paving the way for future advancements in autonomous and self-optimizing data centers.
Keyword SLA Compliance, Load Balancing Algorithms, Data Center Optimization, Data Genetic Algorithms, Resource Utilization
Reference: