1. Selvan, M. A., & Amali, S. M. J. RAINFALL DETECTION USING DEEP LEARNING TECHNIQUE.
2. Selvan, M. A. FIRE MANAGEMENT SYSTEM FOR INDUTRIAL SAFETY APPLICATIONS.
3. Selvan, M. A. A PBL REPORT FOR CONTAINMENT ZONE ALERTING APPLICATION.
4. Selvan, M. A. CONTAINMENT ZONE ALERTING APPLICATION A PROJECT BASED LEARNING REPORT.
5. Selvan, M. A. INDUSTRY-SPECIFIC INTELLIGENT FIRE MANAGEMENT SYSTEM.
6. Arul Selvan, M. (2021). Robust Cyber Attack Detection with Support Vector Machines: Tackling Both Established and Novel Threats. Journal of Science Technology and Research (JSTAR) 2 (1):160-165.
7. Arul Selvan, M. (2024). PHISHING CONTENT CLASSIFICATION USING DYNAMIC WEIGHTING AND GENETIC RANKING OPTIMIZATION ALGORITHM. Journal of Science Technology and Research (JSTAR) 5 (1):471-485.
8. Arul Selvan, M. (2024). Innovative Approaches in Cardiovascular Disease Prediction Through Machine Learning Optimization. Journal of Science Technology and Research (JSTAR) 5 (1):350-359.
9. FELIX, A. S. M. M. D., & KALAIVANAN, X. D. M. S. Averting Eavesdrop Intrusion in Industrial Wireless Sensor Networks.
10. Reka, R., R. Karthick, R. Saravana Ram, and Gurkirpal Singh. “Multi head self-attention gated graph convolutional network based multi‑attack intrusion detection in MANET.” Computers & Security 136 (2024): 103526.
11. Meenalochini, P., R. Karthick, and E. Sakthivel. “An Efficient Control Strategy for an Extended Switched Coupled Inductor Quasi-Z-Source Inverter for 3 Φ Grid Connected System.” Journal of Circuits, Systems and Computers 32.11 (2023): 2450011.
12. Karthick, R., et al. “An optimal partitioning and floor planning for VLSI circuit design based on a hybrid bio-inspired whale optimization and adaptive bird swarm optimization (WO-ABSO) algorithm.” Journal of Circuits, Systems and Computers 32.08 (2023): 2350273.
13. Rajagopal RK, Karthick R, Meenalochini P, Kalaichelvi T. Deep Convolutional Spiking Neural Network optimized with Arithmetic optimization algorithm for lung disease detection using chest X-ray images. Biomedical Signal Processing and Control. 2023 Jan 1;79:104197.
14. Karthick, R., and P. Meenalochini. “Implementation of data cache block (DCB) in shared processor using field-programmable gate array (FPGA).” Journal of the National Science Foundation of Sri Lanka 48.4 (2020).
15. Karthick, R., A. Senthilselvi, P. Meenalochini, and S. Senthil Pandi. “Design and analysis of linear phase finite impulse response filter using water strider optimization algorithm in FPGA.” Circuits, Systems, and Signal Processing 41, no. 9 (2022): 5254-5282.
16. Karthick, R., and M. Sundararajan. “SPIDER-based out-of-order execution scheme for HtMPSOC.” International Journal of Advanced Intelligence paradigms 19.1 (2021): 28-41.
17. Karthick, R., Dawood, M.S. &Meenalochini, P. Analysis of vital signs using remote photoplethysmography (RPPG). J Ambient Intell Human Comput 14, 16729–16736 (2023). https://doi.org/10.1007/s12652-023-04683-w
18. Preetha, M., &Budaraju, R. R. Jackulin. C, PSG Aruna Sri, T. Padmapriya “Deep Learning-Driven Real-Time Multimodal Healthcare Data Synthesis”. International Journal of Intelligent Systems and Applications in Engineering (IJISAE), ISSN, 2147-6799.
19. Sastry, J. K. R., Ch, B., &Budaraju, R. R. (2023). Implementing Dual Base Stations within an IoT Network for Sustaining the Fault Tolerance of an IoT Network through an Efficient Path Finding Algorithm. Sensors, 23(8), 4032.
20. Chutkay, S., Budaraju, R. R., Katta, B. K., & Sadhu, V. K. (2013). U.S. Patent Application No. 13/231,421.
21. Nagesh, O. S., Budaraju, R. R., Kulkarni, S. S., Vinay, M., Ajibade, S. S. M., Chopra, M., … &Kaliyaperumal, K. (2024). Boosting enabled efficient machine learning technique for accurate prediction of crop yield towards precision agriculture. Discover Sustainability, 5(1), 78.
22. Jammalamadaka, S. K. R., Chokara, B., Jammalamadaka, S. B., Duvvuri, B. K., &Budaraju, R. (2023). Enhancing the Fault Tolerance of a Multi-Layered IoT Network through Rectangular and Interstitial Mesh in the Gateway Layer. Journal of Sensor and Actuator Networks, 12(5), 76.
23. Hazzazi, M. M., Budaraju, R. R., Bassfar, Z., Albakri, A., & Mishra, S. (2023). A Finite State Machine-Based Improved Cryptographic Technique. Mathematics, 11(10), 2225.
24. Budaraju, R. R., & Jammalamadaka, S. K. R. (2024). Mining Negative Associations From Medical Databases Considering Frequent, Regular, Closed and Maximal Patterns. Computers, 13(1), 18.
25. Biyyapu, V. P., Jammalamadaka, S. K. R., Jammalamadaka, S. B., Chokara, B., Duvvuri, B. K. K., &Budaraju, R. R. (2023). Building an Expert System through Machine Learning for Predicting the Quality of a Website Based on Its Completion. Computers, 12(9), 181.
26. Attuluri, S., Bhupati, C., Ramya, L., Tiwari, A., Budaraju, R. R., & Cotrina-Aliaga, J. C. (2023). Smart investigations into the development of an effective computer-assisted diagnosis system for CT scan brain depictions. SN Computer Science, 4(5), 504.
27. Attuluri, S., Ramesh, M., Budaraju, R. R., Kumar, S., Swain, J., & Kurmi, J. (2024). Original Research Article Defending against phishing attacks in cloud computing using digital watermarking. Journal of Autonomous Intelligence, 7(5).
28. Budaraju, R. R., & Nagesh, O. S. (2023, June). Multi-Level Image Thresholding Using Improvised Cuckoo Search Optimization Algorithm. In 2023 3rd International Conference on Intelligent Technologies (CONIT) (pp. 1-7). IEEE.
29. Ramasamy, L. K., Khan, F., Shah, M., Prasad, B. V. V. S., Iwendi, C., &Biamba, C. (2022). Secure smart wearable computing through artificial intelligence-enabled internet of things and cyber-physical systems for health monitoring. Sensors, 22(3), 1076.
30. Edeh, M. O., Dalal, S., Obagbuwa, I. C., Prasad, B. S., Ninoria, S. Z., Wajid, M. A., & Adesina, A. O. (2022). Bootstrapping random forest and CHAID for prediction of white spot disease among shrimp farmers. Scientific Reports, 12(1), 20876.
31. Imoize, A. L., Islam, S. M., Poongodi, T., Kumar, R. L., & Prasad, B. S. (Eds.). (2023). Unmanned Aerial Vehicle Cellular Communications. Springer International Publishing.
32. Onyema, E. M., Balasubaramanian, S., Iwendi, C., Prasad, B. S., & Edeh, C. D. (2023). Remote monitoring system using slow-fast deep convolution neural network model for identifying anti-social activities in surveillance applications. Measurement: Sensors, 27, 100718.
33. Syed, S. A., & Prasad, B. V. V. S. (2019, April). Merged technique to prevent SYBIL Attacks in VANETs. In 2019 International Conference on Computer and Information Sciences (ICCIS) (pp. 1-6). IEEE.
34. Kalluru, S. R., & Gurijala, P. K. R. Increasing Efficiency of Goods Receipt with Mobility Solutions.
35. Gurijala, P. K. R., & Kalluru, S. R. Enhancing Manufacturing Efficiency with Mobility Applications.
36. Gurijala, P. K. R., Kalluru, S. R., & Dave, R. Maximizing Procurement Efficiency through Purchase Requisitions Load Building.
37. Kalluru, S. R., & Gurijala, P. K. R. Improving Putaway Efficiency Through Innovative Solutions.
38. Robinson, M., Kumar, A., Kantamaneni, N., Gurijala, P. K. R., Chandaliya, P., & Dungarwal, U. CMPE 200–Computer Architecture & Design.
39. Amuthakkanan, R., Kannan, S. M., & Satheeshpandian, D. (2007). Reliability analysis of software based electro pneumatic system using bayesian network. In Proceedings of the 2nd international conference on Mechatronics (pp. 805-811).
40. Saravanan, V., Banerjee, N., Amuthakkannan, R., & Rajakumar, S. Microstructural Evolution and Mechanical Properties of Friction Stir Welded Dissimilar AA2014-T6 and AA7075-T6 Aluminum Alloy Joints, Metallography, Microstructure, and Analysis, Vol. 4, No. 3, 2015.
41. Amuthakkannan, R. (2011). Effective Software Assembly for the Real time systems using Multi-level Genetic Algorithm. International Journal of Engineering Science and Technology (IJEST), 3(8), 6190.
42. Reddy, C. S., & Aradhya, G. B. (2020). Driving forces for the success of food ordering and delivery apps: a descriptive study. International Journal of Engineering and Management Research, 10.
43. Patil, B., TK, S. K., Kumar, B. S., & Shankar, M. S. (2021). Impact of consumer behavior based on store atmospherics. PalArch’s Journal of Archaeology of Egypt/Egyptology, 18(09), 480-492.
44. Reddy, C. S., & Aradhya, G. B. (2017). Impact of Online Consumer Reviews on Consumer Purchase Decision in Bangalore. International Journal of Allied Practice, Research and Review, 4(3), 1-7.
45. Preethi, B., Jayaprakash, R., Rani, S. K., & Vijayakumar, N. (2021). Characterization, molecular docking, antimicrobial and anticancer studies on 5-Bromosalicylaldehyde-furan-2-yl-methanamine condensed schiff base rare earth metal complexes. Asian J. Chem, 1252.
46. Sivashanmugam, G., Lakshmi, K., Preethi, B., Nelson, S., & Sathiyaseelan, M. (2021). CTAB-templated formation of CuCo2O4/CuO nanorods and nanosheets for high-performance supercapacitor applications. Journal of Materials Science: Materials in Electronics, 32(23).
47. Preethi, B., Sha, S., Jayaprakash, R., Rani, S. K., & Hemalatha, S. SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL STUDIES ON 4-BROMO-2-{(Z)-[(FURAN-2-YLMETHYL) IMINO] METHYL} PHENOL PRASEODYMIUM COMPLEX.
48. Preethi, B., Buvaneswari, K., & Jayaprakash, R. Corrosion Inhibition Studies of Furan Based Schiff Base on AA6351 Frictional Surfaced Mild Steel. In Proceedings of the 1st International Conference on Recent Advancements in Materials Science and Technology, Volume II: ICRAMST’24, 29-30 January, Coimbatore, India (p. 453). Springer Nature.
49. Senthilnathan, G., Ayyadurai, G. K., Jayaprakash, R., Preethi, B., Purushothaman, R., & Rani, S. K. (2024). Anti-corrosive efficacy of indanyl methacrylate copolymers ratio on mild steel in salt water and DFT investigations. Iranian Polymer Journal, 1-16.
50. Sathiyaseelan, M., Kunhikrishnan, L., Rosy, P. J., Sivashanmugam, G., & Preethi, B. (2024). Synthesis of 1D nanorod and 2D nanoflake mixed structures of nickel cobaltite: an efficient diffusion-controlled electrode material for asymmetric supercapacitor application. Applied Physics A, 130(4), 263.
51. Jayaprakash, R. In silico Docking Approach of Vitex negundo (Nochi Plant) Leaves Chemical Constituents against Covid-19 Main Protease and 6LU7.
52. Sivashanmugam, G., Lakshmi, K., Preethi, B., & Nelson, S. CTAB-templated formation of CuCo2O4/CuO nanorods and nanosheets for high-performance supercapacitor.
53. Preethi, B. Synthesis and Characterization of Furan Derived Schiff Base Rare Earth Metal Complexes and Study of Their Biological Applications and Computational Analysis.
54. Rasappan, A. S., Palanisamy, R., Thangamuthu, V., Dharmalingam, V. P., Natarajan, M., Archana, B., … & Kim, J. (2024). Battery-type WS2 decorated WO3 nanorods for high-performance supercapacitors. Materials Letters, 357, 135640.
55. Archana, B., & Sreedaran, S. (2023). Synthesis, characterization, DNA binding and cleavage studies, in-vitro antimicrobial, cytotoxicity assay of new manganese (III) complexes of N-functionalized macrocyclic cyclam based Schiff base ligands. Polyhedron, 231, 116269.
56. Archana, B., & Sreedaran, S. (2022). New cyclam based Zn (II) complexes: effect of flexibility and para substitution on DNA binding, in vitro cytotoxic studies and antimicrobial activities. Journal of Chemical Sciences, 134(4), 102.
57. Archana, B., & Sreedaran, S. (2021). POTENTIALLY ACTIVE TRANSITION METAL COMPLEXES SYNTHESIZED AS SELECTIVE DNA BINDING AND ANTIMICROBIAL AGENTS. European Journal of Molecular and Clinical Medicine, 8(1), 1962-1971.
58. Archana, B., & Sreedaran, S. Spectral Characterization and In Vitro Screening of cyclam based Unsymmetrical Binuclear Copper (II) and Nickel (II) Complexes.
59. Sairam, M. V. S., & Sivaparvathi, M. (2017). Reduction of Reporting Time for Throughput Enhancement in Cooperative Spectrum Sensing Based Cognitive Radio. network, 164.
60. Egala, R., & Sairam, M. V. S. (2024). A Review on Medical Image Analysis Using Deep Learning. Engineering Proceedings, 66(1), 7.
61. Sairam, M. V. S., Egala, R., & Nohith, K. S. (2024). Deep Learning Framework for Enhancing the Performance of Cognitive Radio Network. Journal of Emerging Technologies and Innovative Research (JETIR), 11(11).
62. Sairam, M. V. S., Riyaz, S., Madhu, R., & Harini, V. (2018). Low-complexity selected mapping scheme using a bank of butterfly circuits in orthogonal frequency division multiplexing systems. Wireless Personal Communications, 99(3), 1315-1328.
63. Riyaz, S., & Sairam, M. V. S. PAPR Reduction Using Extended BCH Code with Biasing Vector Technique in OFDM System.
64. Rajasekhar, H., Sairam, M. V. S., & Egala, R. (2024). SLM-BASED PAPR REDUCTION IN OFDM SYSTEM USING FOUR DISTINCT MATRICES. IJRAR-International Journal of Research and Analytical Reviews (IJRAR) Volume, 11, 276-282.
65. Sairam, M. V. S., & PrabhakaraRao, D. R. B. (2008). A Novel Coding Technique To Minimise The Transmission Bandwidth And Bit Error Rate In DPSK. IJCSNS, 8(5), 345.
66. Lavanya, K., & Sairam, M. (2015). Improvement of ber performance in ofdm under various channels with eh code. International Journal of Advanced Research in Computer and Communication Engineering, 4(7), 131-134.
67. Sairam, M. V. S. (2017). PAPR Reduction in SLM Scheme using Exhaustive Search Method. European Journal of Advances in Engineering and Technology, 4(10), 739-743.
68. Lavanya, K., & Sairam, M. V. S. (2017). Enhancement of Error Performance in OFDM System with Extended Hamming Code Under various Channels. Journal of Network Communications and Emerging Technologies (JNCET) www. jncet. org, 7(10).
Page No: 631 - 639
Abstract : Underwater Wireless Sensor Networks (UWSNs) are pivotal for various applications, including oceanographic data collection, environmental monitoring, and naval operations. However, the harsh underwater environment poses challenges in designing efficient routing protocols, especially concerning energy consumption and data transmission reliability. This paper proposes an optimized depth-based routing protocol for energy-aware data transmission in UWSNs, focusing on minimizing energy usage while ensuring robust data delivery. The protocol dynamically adjusts transmission power based on node depth and residual energy, reducing communication overhead and prolonging network lifetime.
The proposed methodology employs a multi-step approach, starting with the initialization phase, where nodes calculate their depth and energy levels. Following this, a depth-based clustering mechanism organizes nodes into clusters, allowing more efficient data aggregation. The routing process then prioritizes nodes with higher energy levels, reducing premature node failure. A novel energy-aware transmission algorithm ensures that data packets are transmitted over the most energy-efficient paths, thus extending the overall network longevity. Simulation results demonstrate that the proposed protocol achieves significant improvements in energy consumption, data transmission reliability, and network lifetime compared to traditional methods. The conclusion discusses the potential future enhancements, including adaptive algorithms that can further reduce energy consumption in large-scale UWSNs.
Keyword Underwater Wireless Sensor Networks, Depth-Based Routing, Energy-Aware Transmission, Acoustic Communication, Network Lifetime.
Reference: