Author : Yoheswari S
Page No: 408 - 414
Abstract : As the Internet of Things (IoT) continues to expand, ensuring secure and efficient data storage and retrieval becomes a critical challenge. IoT devices, often constrained by limited computational resources, require lightweight encryption protocols that balance security and performance. This paper presents an optimized encryption protocol designed specifically for lightweight, searchable data in IoT environments. The proposed protocol utilizes advanced optimization techniques to enhance the efficiency and security of searchable encryption, enabling rapid data retrieval without compromising the integrity and confidentiality of the data. The protocol leverages a hybrid cryptographic approach, combining symmetric and asymmetric encryption, to ensure robust protection against unauthorized access while maintaining low computational overhead. Furthermore, the implementation of an optimized keyword indexing mechanism facilitates fast and accurate search operations, making the protocol well-suited for real-time IoT applications. Extensive experiments were conducted using various IoT datasets to evaluate the performance of the proposed protocol in terms of encryption speed, search efficiency, and overall security. The results demonstrate that the optimized encryption protocol significantly outperforms existing methods, offering a scalable solution that meets the stringent requirements of IoT systems. This research contributes to the field by providing a practical and secure encryption solution that addresses the unique challenges of IoT environments, paving the way for more secure and efficient IoT networks.
Keyword Searchable Encryption, Internet of Things (IoT), Lightweight Cryptography, Keyword Indexing, Data Security
Reference:

1. Ramesh, G., Gorantla, V. A. K., & Gude, V. (2023). A hybrid methodology with learning based approach for protecting systems from DDoS attacks. Journal of Discrete Mathematical Sciences and Cryptography, 26(5), 1317-1325.
2. Logeshwaran, J., Gorantla, V. A. K., Gude, V., & Gorantla, B. (2023, September). The Smart Performance Analysis of Cyber Security Issues in Crypto Currency Using Blockchain. In 2023 6th International Conference on Contemporary Computing and Informatics (IC3I) (Vol. 6, pp. 2235-2241). IEEE.
3. Komatireddy, S. R., Meghana, K., Gude, V., & Ramesh, G. (2023, December). Facial Shape Analysis and Accessory Recommendation: A Human-Centric AI Approach. In 2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA) (pp. 182-191). IEEE.
4. Sriramulugari, S. K., Gorantla, V. A. K., Gude, V., Gupta, K., & Yuvaraj, N. (2024, March). Exploring mobility and scalability of cloud computing servers using logical regression framework. In 2024 2nd International Conference on Disruptive Technologies (ICDT) (pp. 488-493). IEEE.
5. Gorantla, V. A. K., Gude, V., Sriramulugari, S. K., Yuvaraj, N., & Yadav, P. (2024, March). Utilizing hybrid cloud strategies to enhance data storage and security in e-commerce applications. In 2024 2nd International Conference on Disruptive Technologies (ICDT) (pp. 494-499). IEEE.
6. Bharathi, G. P., Chandra, I., Sanagana, D. P. R., Tummalachervu, C. K., Rao, V. S., & Neelima, S. (2024). AI-driven adaptive learning for enhancing business intelligence simulation games. Entertainment Computing, 50, 100699.
7. Sanagana, D. P. R., & Tummalachervu, C. K. (2024, May). Securing Cloud Computing Environment via Optimal Deep Learning-based Intrusion Detection Systems. In 2024 Second International Conference on Data Science and Information System (ICDSIS) (pp. 1-6). IEEE.
8. Sivaramkumar, V., Thansekhar, M. R., Saravanan, R., & Miruna Joe Amali, S. (2017). Multi-objective vehicle routing problem with time windows: Improving customer satisfaction by considering gap time. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(7), 1248-1263.
9. Reka, R., R. Karthick, R. Saravana Ram, and Gurkirpal Singh. “Multi head self-attention gated graph convolutional network based multi‑attack intrusion detection in MANET.” Computers & Security 136 (2024): 103526.
10. Meenalochini, P., R. Karthick, and E. Sakthivel. “An Efficient Control Strategy for an Extended Switched Coupled Inductor Quasi-Z-Source Inverter for 3 Φ Grid Connected System.” Journal of Circuits, Systems and Computers 32.11 (2023): 2450011.
11. Karthick, R., et al. “An optimal partitioning and floor planning for VLSI circuit design based on a hybrid bio-inspired whale optimization and adaptive bird swarm optimization (WO-ABSO) algorithm.” Journal of Circuits, Systems and Computers 32.08 (2023): 2350273.
12. Rajagopal RK, Karthick R, Meenalochini P, Kalaichelvi T. Deep Convolutional Spiking Neural Network optimized with Arithmetic optimization algorithm for lung disease detection using chest X-ray images. Biomedical Signal Processing and Control. 2023 Jan 1;79:104197.
13. Karthick, R., and P. Meenalochini. “Implementation of data cache block (DCB) in shared processor using field-programmable gate array (FPGA).” Journal of the National Science Foundation of Sri Lanka 48.4 (2020).
14. Karthick, R., A. Senthilselvi, P. Meenalochini, and S. Senthil Pandi. “Design and analysis of linear phase finite impulse response filter using water strider optimization algorithm in FPGA.” Circuits, Systems, and Signal Processing 41, no. 9 (2022): 5254-5282.
15. Karthick, R., and M. Sundararajan. “SPIDER-based out-of-order execution scheme for HtMPSOC.” International Journal of Advanced Intelligence paradigms 19.1 (2021): 28-41.
16. Karthick, R., Dawood, M.S. & Meenalochini, P. Analysis of vital signs using remote photoplethysmography (RPPG). J Ambient Intell Human Comput 14, 16729–16736 (2023). https://doi.org/10.1007/s12652-023-04683-w
17. Kiran, A., Kalpana, V., Madanan, M., Ramesh, J. V. N., Alfurhood, B. S., & Mubeen, S. (2023). Anticipating network failures and congestion in optical networks a data analytics approach using genetic algorithm optimization. Optical and Quantum Electronics, 55(13), 1193.
18. Lalithambigai, M., Kalpana, V., Kumar, A. S., Uthayakumar, J., Santhosh, J., & Mahaveerakannan, R. (2023, February). Dimensionality reduction with DLMNN technique for handling secure medical data in healthcare-IoT model. In 2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS) (pp. 111-117). IEEE.
19. Kalpana, V., Mishra, D. K., Chanthirasekaran, K., Haldorai, A., Nath, S. S., & Saraswat, B. K. (2022). On reducing energy cost consumption in heterogeneous cellular networks using optimal time constraint algorithm. Optik, 270, 170008.
20. Kalpana, V., & Karthik, S. (2020). Route availability with QoE and QoS metrics for data analysis of video stream over a mobile ad hoc networks. Wireless Personal Communications, 114(3), 2591-2612.
21. Kalpana, V., & Karthik, S. (2018, February). Bandwidth Constrained Priority Based Routing Algorithm for Improving the Quality of Service in Mobile Ad hoc Networks. In 2018 International Conference on Soft-computing and Network Security (ICSNS) (pp. 1-8). IEEE.