Author:
Chaitanya Kanth TummalachervuPublished in
Journal of Science Technology and Research( Volume , Issue )
1. Prasad, B. S., Gupta, S., Borah, N., Dineshkumar, R., Lautre, H. K., & Mouleswararao, B. (2023). Predicting diabetes with multivariate analysis an innovative KNN-based classifier approach. Preventive Medicine, 174, 107619.
2. Prasad, B. V. V. S., and Sheba Angel. “Predicting future resource requirement for efficient resource management in cloud.” International Journal of Computer Applications 101, no. 15 (2014): 19-23.
3. Prasad, B. V., and S. Salman Ali. “Software–defined networking based secure rout-ing in mobile ad hoc network.” International Journal of Engineering & Technology 7.1.2 (2017): 229.
4. Alapati, N., Prasad, B. V. V. S., Sharma, A., Kumari, G. R. P., Veeneetha, S. V., Srivalli, N., … & Sahitya, D. (2022, November). Prediction of Flight-fare using machine learning. In 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP) (pp. 134-138). IEEE.
5. Kumar, B. R., Ashok, G., & Prasad, B. S. (2015). Tuning PID Controller Parameters for Load Frequency Control Considering System Uncertainties. Int. Journal of Engineering Research and Applications, 5(5), 42-47.
6. Ali, S. S., & Prasad, B. V. V. S. (2017). Secure and energy aware routing protocol (SEARP) based on trust-factor in Mobile Ad-Hoc networks. Journal of Statistics and Management Systems, 20(4), 543–551. https://doi.org/10.1080/09720510.2017.1395174
7. Onyema, E. M., Balasubaramanian, S., Iwendi, C., Prasad, B. S., & Edeh, C. D. (2023). Remote monitoring system using slow-fast deep convolution neural network model for identifying anti-social activities in surveillance applications. Measurement: Sensors, 27, 100718.
8. Syed, S. A., & Prasad, B. V. V. S. (2019, April). Merged technique to prevent SYBIL Attacks in VANETs. In 2019 International Conference on Computer and Information Sciences (ICCIS) (pp. 1-6). IEEE.
9. Patil, P. D., & Chavan, N. (2014). Proximate analysis and mineral characterization of Barringtonia species. International Journal of Advances in Pharmaceutical Analysis, 4(3), 120-122.
10. Desai, Mrunalini N., Priya D. Patil, and N. S. Chavan. “ISOLATION AND CHARACTERIZATION OF STARCH FROM MANGROVES Aegiceras corniculatum (L.) Blanco and Cynometra iripa Kostel.” (2011).
11. Patil, P. D., Gokhale, M. V., & Chavan, N. S. (2014). Mango starch: Its use and future prospects. Innov. J. Food Sci, 2, 29-30.
12. Priya Patil, D., N. S. Chavan, and B. S. Anjali. “Sonneratia alba J. Smith, A Vital Source of Gamma Linolenic Acid (GLA).” Asian J Pharm Clin Res 5.1 (2012): 172-175.
13. Priya, D., Patil, A., Niranjana, S., & Chavan, A. (2012). Potential testing of fatty acids from mangrove Aegiceras corniculatum (L.) Blanco. Int J Pharm Sci, 3, 569-71.
14. Priya, D., Patil, A., Niranjana, S., & Chavan, A. (2012). Potential testing of fatty acids from mangrove Aegiceras corniculatum (L.) Blanco. Int J Pharm Sci, 3, 569-71.
15. Patil, Priya D., and N. S. Chavan. “A comparative study of nutrients and mineral composition of Carallia brachiata (Lour.) Merill.” International Journal of Advanced Science and Research 1 (2015): 90-92.
16. Patil, P. D., & Chavan, N. S. (2013). A need of conservation of Bruguiera species as a famine food. Annals Food Science and Technology, 14, 294-297.
17. Bharathi, G. P., Chandra, I., Sanagana, D. P. R., Tummalachervu, C. K., Rao, V. S., &Neelima, S. (2024). AI-driven adaptive learning for enhancing business intelligence simulation games. Entertainment Computing, 50, 100699.
18. Nagarani, N., et al. “Self-attention based progressive generative adversarial network optimized with momentum search optimization algorithm for classification of brain tumor on MRI image.” Biomedical Signal Processing and Control 88 (2024): 105597.
19. Reka, R., R. Karthick, R. Saravana Ram, and Gurkirpal Singh. “Multi head self-attention gated graph convolutional network based multi‑attack intrusion detection in MANET.” Computers & Security 136 (2024): 103526.
20. Meenalochini, P., R. Karthick, and E. Sakthivel. “An Efficient Control Strategy for an Extended Switched Coupled Inductor Quasi-Z-Source Inverter for 3 Φ Grid Connected System.” Journal of Circuits, Systems and Computers 32.11 (2023): 2450011.
21. Karthick, R., et al. “An optimal partitioning and floor planning for VLSI circuit design based on a hybrid bio-inspired whale optimization and adaptive bird swarm optimization (WO-ABSO) algorithm.” Journal of Circuits, Systems and Computers 32.08 (2023): 2350273.
22. Jasper Gnana Chandran, J., et al. “Dual-channel capsule generative adversarial network optimized with golden eagle optimization for pediatric bone age assessment from hand X-ray image.” International Journal of Pattern Recognition and Artificial Intelligence 37.02 (2023): 2354001.
23. Rajagopal RK, Karthick R, Meenalochini P, Kalaichelvi T. Deep Convolutional Spiking Neural Network optimized with Arithmetic optimization algorithm for lung disease detection using chest X-ray images. Biomedical Signal Processing and Control. 2023 Jan 1;79:104197.
24. Karthick, R., and P. Meenalochini. “Implementation of data cache block (DCB) in shared processor using field-programmable gate array (FPGA).” Journal of the National Science Foundation of Sri Lanka 48.4 (2020).
25. Karthick, R., A. Senthilselvi, P. Meenalochini, and S. Senthil Pandi. “Design and analysis of linear phase finite impulse response filter using water strider optimization algorithm in FPGA.” Circuits, Systems, and Signal Processing 41, no. 9 (2022): 5254-5282.
26. Kanth, T. C. (2024). AI-POWERED THREAT INTELLIGENCE FOR PROACTIVE SECURITY MONITORING IN CLOUD INFRASTRUCTURES.
27. Karthick, R., and M. Sundararajan. “SPIDER-based out-of-order execution scheme for HtMPSOC.” International Journal of Advanced Intelligence paradigms 19.1 (2021): 28-41.
28. Karthick, R., Dawood, M.S. & Meenalochini, P. Analysis of vital signs using remote photoplethysmography (RPPG). J Ambient Intell Human Comput 14, 16729–16736 (2023). https://doi.org/10.1007/s12652-023-04683-w
29. Selvan, M. A., & Amali, S. M. J. (2024). RAINFALL DETECTION USING DEEP LEARNING TECHNIQUE
ABSTRACT:
Optimizing data science workflows in cloud environments has become essential for organizations aiming to harness big data effectively. This paper addresses key challenges such as handling vast data volumes, managing resources efficiently, reducing operational costs, and ensuring data privacy. It presents innovative solutions including workflow automation, containerization using Docker and Kubernetes, and serverless computing to enhance scalability. Additionally, it explores how parallel processing frameworks like Apache Spark and Hadoop significantly boost processing speed and efficiency. Machine learning integration for dynamic task optimization and AI-driven workflow refinement are also examined. Real-world case studies across industries illustrate the practical benefits of these strategies. By embracing these advanced technologies, organizations can streamline operations, lower costs, and enhance analytical accuracy. This research offers actionable insights for optimizing data science workflows in dynamic cloud infrastructures, paving the way for future advancements and addressing ethical and security concerns associated with cloud-based data operations.
INTRODUCTION:
In today’s data-driven world, optimizing data science workflows is critical to gaining timely, actionable insights. Cloud computing offers scalable infrastructure and on-demand processing power, making it an ideal platform for data science. However, challenges like massive data volume, fluctuating resource needs, operational costs, and strict data security requirements complicate workflow efficiency. Traditional methods often fall short in dynamically adapting to these complexities, leading to inefficiencies and higher expenses. This paper focuses on the strategic implementation of optimization techniques in cloud environments. It examines current obstacles and explores technologies such as containerization, workflow automation, and parallel processing to improve agility and scalability. Furthermore, it evaluates the role of serverless architectures and AI-powered tools in refining real-time analytics. Through this analysis, we aim to provide a comprehensive framework for optimizing data science workflows and helping organizations maximize their cloud investments while maintaining performance, security, and cost-effectiveness.

