Author : Tehreem Riaz, Ayemin Awais, Muhammad Akram, Surendar Rangasamy, Francisco Garcia-Sierra, Md. Al Hasibuzzaman, Fethi Ahmet Ozdemir, Gaweł Sołowski, Najmiatul Fitria, Marcos Altable, Mohamed M. Hassan, Adonis Sfera
Page No: 44-56
Abstract : Since the beginning of recorded history, Curcuma longa has been valued for its medicinal benefits as a root crop. Turmeric's phytochemicals, which include curcuminoids, essential oils, and other bioactive substances, are principally responsible for its therapeutic effects. The Phytochemistry of Curcuma longa is described in this narrative review, with special attention paid to the major classes of phytochemicals and their potential for medicinal use. The therapeutic properties of the curcuminoids, particularly curcumin, as well as their potential to prevent and cure a variety of chronic disorders have all been thoroughly investigated. Turmeric possesses a variety of bioactive chemicals, which include turmerones and polysaccharides, which have shown to have important pharmacological effects, such as antibacterial, anticancer, and hepatoprotective properties. The antibacterial and antifungal qualities of turmeric’s essential oils have also been proved. Promising results have been found in studies looking at the phytochemical potential of Curcuma longa, and investigations into its medicinal uses are still on-going. The objective of this study is to give a thorough review of what is currently known regarding the Phytochemistry & therapeutic potential of this valuable plant.
Keyword Turmeric, Curcuma longa, Phytochemistry, Bioactive compounds, Medicinal uses
Reference:

1. Hussain, Z.; Thu, H.E.; Amjad, M.W.; Hussain, F.; Ahmed, T.A.; Khan, S. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: A review of new trends and future perspectives. Mater. Sci. Eng. C 2017, 77, 1316–1326.
2. Hussain, W.; Haleem, K.S.; Khan, I.; Tauseef, I.; Qayyum, S.; Ahmed, B.; Riaz, M.N. Medicinal plants: A repository of antiviral metabolites. Future Virol. 2017, 12, 299–308.
3. Krishnaswamy, K. Traditional Indian spices and their health significance. Asia Pac. J. Clin. Nutr. 2008, 17, 265–268.
4. Pandey, G. Dravyaguna Vijnana, 2nd ed.; Krishnadas Academy Publisher: Varanasi, India, 2002; Volume 1, pp. 737–746.
5. Prasad, S.; Aggarwal, B.B. Turmeric, the golden spice. In Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011.
6. Kapoor, S.; Lata Saraf, S. Topical Herbal Therapies an Alternative and Complementary Choice. Res. J. Med. Plant 2011, 5, 650–669.
7. Zorofchian Moghadamtousi, S.; Abdul Kadir, H.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin. BioMed Res. Int. 2014, 2014, 186864.
8. Ody, P. Turmeric: Nature’s Miracle Healer: Fact or Fiction; Souvenir Press: London, UK, 2018.
9. Mathew, A.; Pushpanath, S. Indian Spices; Dee Bee Info Publications: Kottayam, India, 2005.
10. Institute, N.C. Clinical development plan: Curcumin. Cell. Biochem. 1996, 26, 72–85.
11. Sasikumar, B. Genetic resources of Curcuma: Diversity, characterization and utilization. Plant Genet. Resour. 2005, 3, 230–251.
12. Easmin, M.S.; Sarker, M.Z.; Ferdosh, S.; Shamsudin, S.H.; Yunus, K.B.; Uddin, M.S.; Sarker, M.M.R.; Akanda, M.J.H.; Hossain, M.S.; Khalil, H.A. Bioactive compounds and advanced processing technology: Phaleria macrocarpa (sheff.) Boerl, a review. J. Chem. Technol. Biotechnol. 2015, 90, 981–991.
13. Van Andel, T.; Carvalheiro, L.G.; Medicine, A. Why urban citizens in developing countries use traditional medicines: The case of Suriname. Evid.-Based Complement. Altern. Med. 2013, 2013, 1–13.
14. Kew Science. Curcuma longa L. Plants of the World Online. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:796451-1 (accessed on 19 June 2022).
15. Kandiannan, K.; Anandaraj, M.; Prasath, D.; Zachariah, T.J.; Krishnamurthy, K.; Srinivasan, V. Evaluation of short and tall true turmeric (Curcuma longa) varieties for growth, yield and stability. Indian J. Agric. Sci. 2015, 85, 718–720.
16. Nair, R.R.; Shiva, K.N.; Anchu, S.; Zachariah, T.J. Characterization of open-pollinated seedling progenies of turmeric (Curcuma longa L.) based on chromosome number, plant morphology, rhizome yield and rhizome quality. Cytologia 2010, 75, 443–449.
17. Araujo CAC, Leon LL 2001. Biological activities of Curcuma longa L. Mem Inst Oswaldo Cruz Rio de Janeiro 96:723-728 Arun N, Nalini N 2002. Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Food Hum Nutr 57:41-52
18. Davis JM, Murphy EA, Carmichael MD, Zielinski MR, Groschwitz CM, Brown AS, Gangemi JD, Ghaffar A, Mayer EP 2007. Curcumin effects on inflammation and performance recovery following eccentric exercise-induced muscle damage. Am J Physiol Regul Integr Comp Physiol 292:2168-2173.
19. Thangapazham RL, Sharma A, Maheshwari RK 2007. Beneficial role of curcumin in skin diseases. Adv Exp Med Biol 595:343- 357.
20. Barchitta M, Maugeri A, Favara G, Magnano San Lio R, Evola G, Agodi A, et al. Nutrition and Wound Healing: An Overview Focusing on the Beneficial Effects of Curcumin. International Journal of Molecular Sciences. 2019 Jan;20(5):1119.
21. Lutomski J, Kedzia B, Debska W. Wirkung des äthanolextraktes und aktiver substanzen aus curcuma longa auf bakterien und pilze. Planta Medica. 1974 Aug;26(5):9–19.
22. Mazumder A, Raghavan K, Weinstein J, Kohn KW, Pommier Y. Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochemical Pharmacology. 1995 Apr;49(8):1165–70.
23. Srivastava R, Dikshit M, Srimal RC, Dhawan BN. Anti-thrombotic effect of curcumin. Thrombosis Research. 1985 Nov;40(3):413–7.
24. Jayaprakasha GK, Jaganmohan Rao L, Sakariah KK. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chemistry. 2006 Jan;98(4):720–4.
25. Deeb D, Xu YX, Jiang H, Gao X, Janakiraman N, Chapman RA, et al. Curcumin (Diferuloyl-Methane) Enhances Tumor Necrosis Factor-related Apoptosis-inducing Ligand-induced Apoptosis in LNCaP Prostate Cancer Cells1. Molecular Cancer Therapeutics. 2003 Jan;2(1):95– 103.
26. Błasiak J, Trzeciak A, Małecka-Panas E, Drzewoski J, Iwanienko T, Szumiel I, et al. DNA damage and repair in human lymphocytes and gastric mucosa cells exposed to chromium and curcumin. Teratogenesis, Carcinogenesis, and Mutagenesis. 1999;19(1):19–31.
27. Rao DS, Sekhara NC, Satyanarayana MN, Srinivasan M. Effect of Curcumin on Serum and Liver Cholesterol Levels in the Rat. The Journal of Nutrition. 1970 Nov;100(11):1307–15.
28. Manzan ACCM, Toniolo FS, Bredow E, Povh NP. Extraction of Essential Oil and Pigments from Curcuma longa [L.] by Steam Distillation and Extraction with Volatile Solvents. Journal of Agricultural and Food Chemistry. 2003 Nov;51(23):6802–7.
29. Bhavani Shankar TN, Sreenivasa Murthy V. Effect of turmeric (Curcuma longa) fractions on the growth of some intestinal & pathogenic bacteria in vitro. Indian Journal of Experimental Biology. 1979 Dec;17(12):1363–6.
30. Garg SK. Effect of curcuma longa (rhizomes) on fertility in experimental animals. Planta Medica. 1974 Nov;26(7):225–7
31. Rastogi RP, Dhawan BN. Anticancer and antiviral activities in indian medicinal plants: A review. Drug Development Research. 1990;19(1):1–12.
32. Dixit VP, Jain P, Joshi SC. Hypolipidaemic effects of Curcuma longa L and Nardostachys jatamansi, DC in triton-induced hyperlipidaemic rats. Indian Journal of Physiology and Pharmacology. 1988 Dec;32(4):299–304.
33. Kuttan R, Bhanumathy P, Nirmala K, George MC. Potential anticancer activity of turmeric (Curcuma longa). Cancer Letters. 1985 Nov;29(2):197–202.
34. Yegnanarayan R, Saraf AP, Balwani JH. Comparison of anti-inflammatory activity of various extracts of Curcuma longa (Linn). Indian Journal of Medical Research. 1976 Apr;64(4):601–8.
35. Misra SK, Sahu KC. Screening of some indigenous plants for antifungal activity against dermatophytes. Indian Journal of Pharmacology. 1977 Jan;9(4):269.
36. Unnikrishnan MK, Rao MN. Inhibition of nitrite induced oxidation of hemoglobin by curcuminoids. Die Pharmazie. 1995 Jul;50(7):490– 2.
37. Tejada S, Manayi A, Daglia M, Nabavi SF, Sureda A, Hajheydari Z, Gortzi O, Pazoki-Toroudi H, Nabavi SM. Wound Healing Effects of Curcumin: A Short Review. Curr Pharm Biotechnol. 2016;17(11):1002-7. doi: 10.2174/1389201017666160721123109. PMID: 27640646.
38. Lestari ML, Indrayanto G. Curcumin. Profiles Drug Subst Excip Relat Methodol. 2014;39:113–204.
39. Menon, V. P., & Sudheer, A. R. (2007). Antioxidant and anti-inflammatory properties of curcumin. In The molecular targets and therapeutic uses of curcumin in health and disease (pp. 105-125). Springer, Boston, MA.
40. Daily, J. W., Yang, M., & Park, S. (2016). Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: a systematic review and meta-analysis of randomized clinical trials. Journal of medicinal food, 19(8), 717-729.
41. Braga M.C., Vieira E.C.S., de Oliveira T.F. Curcuma longa L. leaves: Characterization (bioactive and antinutritional compounds) for use in human food in Brazil. Food Chem. 2018;265:308–315. doi: 10.1016/j.foodchem.2018.05.096.
42. Chainani-Wu, N., Silverman, E. D., & Reingold, S. C. (2003). Bacterial lipopolysaccharide induces endotoxin tolerance and cross tolerance to the oxidant effects of hydrogen peroxide. Archives of neurology, 60(8), 1113-1117.
43. Kuncha, M., Naidu, V. G. M., Sahu, B. D., Sistla, R., & Borkar, R. M. (2017). Curcumin potentiates the anti-arthritic effect of prednisolone in Freund’s complete adjuvant-induced arthritic rats. Journal of Pharmacy and Pharmacology, 69(2), 165-174.
44. Suresh, G., Das, U. N., & Sreeramulu, S. (2019). Curcumin and γ-tocotrienol-mediated radioprotection and reduction of oxidative stress in cultured human muscle cells. Archives of Physiology and Biochemistry, 125(2), 123-128.
45. Schraufstatter, E.; Bernt, H. Antibacterial action of curcumin and related compounds. Nature 1949, 164, 456
46. Kocaadam, B.; Sanlier, N. Curcumin, an active component of turmeric (curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2889–2895. Available online: https://www.ncbi.nlm.nih.gov/pubmed/26528921 (accessed on 3 February 2022).
47. Liu, M.; Lu, Y.; Gao, P.; Xie, X.; Li, D.; Yu, D.; Yu, M. Effect of curcumin on laying performance, egg quality, endocrine hormones, and immune activity in heat-stressed hens. Poult. Sci. 2020, 99, 2196–2202.
48. Praditya, D.; Kirchhoff, L.; Bruning, J.; Rachmawati, H.; Steinmann, J.; Steinmann, E. Anti-infective properties of the golden spice curcumin. Front. Microbiol. 2019, 10, 912. Available online: https://www.ncbi.nlm.nih.gov/pubmed/31130924 (accessed on 3 February 2022).
49. Yasbolaghi Sharahi, J.; Aliakbar Ahovan, Z.; Taghizadeh Maleki, D.; Riahi Rad, Z.; Riahi Rad, Z.; Goudarzi, M.; Shariati, A.; Bostanghadiri, N.; Abbasi, E.; Hashemi, A. In vitro antibacterial activity of curcumin-meropenem combination against extensively drug-resistant (xdr) bacteria isolated from burn wound infections. Avicenna J. Phytomed. 2020, 10, 3–10.
50. Sundaramoorthy, N.S.; Sivasubramanian, A.; Nagarajan, S. Simultaneous inhibition of marr by salicylate and efflux pumps by curcumin sensitizes colistin resistant clinical isolates of enterobacteriaceae. Microb. Pathog. 2020, 148, 104445.
51. Taghavifar, S.; Afroughi, F.; Saadati Keyvan, M. Curcumin nanoparticles improved diabetic wounds infected with methicillin-resistant staphylococcus aureus sensitized with hamlet. Int. J. Low. Extrem. Wounds 2020. Hajavi J., Momtazi A. A., Johnston T. P., Banach M., Majeed M., Sahebkar A. (2017). Curcumin: a Naturally Occurring Modulator of Adipokines in Diabetes. J. Cel Biochem 118 (12), 4170–4182. 10.1002/jcb.26121
52. Prasad, B. S., Gupta, S., Borah, N., Dineshkumar, R., Lautre, H. K., & Mouleswararao, B. (2023). Predicting diabetes with multivariate analysis an innovative KNN-based classifier approach. Preventive Medicine, 174, 107619.
53. Prasad, B. V. V. S., and Sheba Angel. “Predicting future resource requirement for efficient resource management in cloud.” International Journal of Computer Applications 101, no. 15 (2014): 19-23.
54. Prasad, B. V., and S. Salman Ali. “Software–defined networking based secure rout-ing in mobile ad hoc network.” International Journal of Engineering & Technology 7.1.2 (2017): 229.
55. Alapati, N., Prasad, B. V. V. S., Sharma, A., Kumari, G. R. P., Veeneetha, S. V., Srivalli, N., … & Sahitya, D. (2022, November). Prediction of Flight-fare using machine learning. In 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP) (pp. 134-138). IEEE.
56. Kumar, B. R., Ashok, G., & Prasad, B. S. (2015). Tuning PID Controller Parameters for Load Frequency Control Considering System Uncertainties. Int. Journal of Engineering Research and Applications, 5(5), 42-47.
57. Ali, S. S., & Prasad, B. V. V. S. (2017). Secure and energy aware routing protocol (SEARP) based on trust-factor in Mobile Ad-Hoc networks. Journal of Statistics and Management Systems, 20(4), 543–551. https://doi.org/10.1080/09720510.2017.1395174
58. Onyema, E. M., Balasubaramanian, S., Iwendi, C., Prasad, B. S., & Edeh, C. D. (2023). Remote monitoring system using slow-fast deep convolution neural network model for identifying anti-social activities in surveillance applications. Measurement: Sensors, 27, 100718.
59. Syed, S. A., & Prasad, B. V. V. S. (2019, April). Merged technique to prevent SYBIL Attacks in VANETs. In 2019 International Conference on Computer and Information Sciences (ICCIS) (pp. 1-6). IEEE.
60. Patil, P. D., & Chavan, N. (2014). Proximate analysis and mineral characterization of Barringtonia species. International Journal of Advances in Pharmaceutical Analysis, 4(3), 120-122.
61. Desai, Mrunalini N., Priya D. Patil, and N. S. Chavan. “ISOLATION AND CHARACTERIZATION OF STARCH FROM MANGROVES Aegiceras corniculatum (L.) Blanco and Cynometra iripa Kostel.” (2011).
62. Patil, P. D., Gokhale, M. V., & Chavan, N. S. (2014). Mango starch: Its use and future prospects. Innov. J. Food Sci, 2, 29-30.
63. Priya Patil, D., N. S. Chavan, and B. S. Anjali. “Sonneratia alba J. Smith, A Vital Source of Gamma Linolenic Acid (GLA).” Asian J Pharm Clin Res 5.1 (2012): 172-175.
64. Priya, D., Patil, A., Niranjana, S., & Chavan, A. (2012). Potential testing of fatty acids from mangrove Aegiceras corniculatum (L.) Blanco. Int J Pharm Sci, 3, 569-71.
65. Priya, D., Patil, A., Niranjana, S., & Chavan, A. (2012). Potential testing of fatty acids from mangrove Aegiceras corniculatum (L.) Blanco. Int J Pharm Sci, 3, 569-71.
66. Patil, Priya D., and N. S. Chavan. “A comparative study of nutrients and mineral composition of Carallia brachiata (Lour.) Merill.” International Journal of Advanced Science and Research 1 (2015): 90-92.
67. Patil, P. D., & Chavan, N. S. (2013). A need of conservation of Bruguiera species as a famine food. Annals Food Science and Technology, 14, 294-297.
68. Bharathi, G. P., Chandra, I., Sanagana, D. P. R., Tummalachervu, C. K., Rao, V. S., & Neelima, S. (2024). AI-driven adaptive learning for enhancing business intelligence simulation games. Entertainment Computing, 50, 100699.
69. Nagarani, N., et al. “Self-attention based progressive generative adversarial network optimized with momentum search optimization algorithm for classification of brain tumor on MRI image.” Biomedical Signal Processing and Control 88 (2024): 105597.
70. Reka, R., R. Karthick, R. Saravana Ram, and Gurkirpal Singh. “Multi head self-attention gated graph convolutional network based multi‑attack intrusion detection in MANET.” Computers & Security 136 (2024): 103526.
71. Meenalochini, P., R. Karthick, and E. Sakthivel. “An Efficient Control Strategy for an Extended Switched Coupled Inductor Quasi-Z-Source Inverter for 3 Φ Grid Connected System.” Journal of Circuits, Systems and Computers 32.11 (2023): 2450011.
72. Karthick, R., et al. “An optimal partitioning and floor planning for VLSI circuit design based on a hybrid bio-inspired whale optimization and adaptive bird swarm optimization (WO-ABSO) algorithm.” Journal of Circuits, Systems and Computers 32.08 (2023): 2350273.
73. Jasper Gnana Chandran, J., et al. “Dual-channel capsule generative adversarial network optimized with golden eagle optimization for pediatric bone age assessment from hand X-ray image.” International Journal of Pattern Recognition and Artificial Intelligence 37.02 (2023): 2354001.
74. Rajagopal RK, Karthick R, Meenalochini P, Kalaichelvi T. Deep Convolutional Spiking Neural Network optimized with Arithmetic optimization algorithm for lung disease detection using chest X-ray images. Biomedical Signal Processing and Control. 2023 Jan 1;79:104197.
75. Karthick, R., and P. Meenalochini. “Implementation of data cache block (DCB) in shared processor using field-programmable gate array (FPGA).” Journal of the National Science Foundation of Sri Lanka 48.4 (2020).
76. Karthick, R., A. Senthilselvi, P. Meenalochini, and S. Senthil Pandi. “Design and analysis of linear phase finite impulse response filter using water strider optimization algorithm in FPGA.” Circuits, Systems, and Signal Processing 41, no. 9 (2022): 5254-5282.
77. Karthick, R., and M. Sundararajan. “SPIDER-based out-of-order execution scheme for Ht-MPSOC.” International Journal of Advanced Intelligence paradigms 19.1 (2021): 28-41.
78. Karthick, R., Dawood, M.S. & Meenalochini, P. Analysis of vital signs using remote photoplethysmography (RPPG). J Ambient Intell Human Comput 14, 16729–16736 (2023). https://doi.org/10.1007/s12652-023-04683-w
79. Arul Selvan, M. & Miruna Joe Amali, S. (2024). RAINFALL DETECTION USING DEEP LEARNING TECHNIQUE. Journal of Science Technology and Research 5 (1):37-42.