Author:
Durga Prasada Rao SanaganaPublished in
Journal of Science Technology and Research( Volume , Issue )
1. Prasad, B. S., Gupta, S., Borah, N., Dineshkumar, R., Lautre, H. K., & Mouleswararao, B. (2023). Predicting diabetes with multivariate analysis an innovative KNN-based classifier approach. Preventive Medicine, 174, 107619.
2. Prasad, B. V. V. S., and Sheba Angel. “Predicting future resource requirement for efficient resource management in cloud.” International Journal of Computer Applications 101, no. 15 (2014): 19-23.
3. Prasad, B. V., and S. Salman Ali. “Software–defined networking based secure rout-ing in mobile ad hoc network.” International Journal of Engineering & Technology 7.1.2 (2017): 229.
4. Alapati, N., Prasad, B. V. V. S., Sharma, A., Kumari, G. R. P., Veeneetha, S. V., Srivalli, N., … & Sahitya, D. (2022, November). Prediction of Flight-fare using machine learning. In 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP) (pp. 134-138). IEEE.
5. Kumar, B. R., Ashok, G., & Prasad, B. S. (2015). Tuning PID Controller Parameters for Load Frequency Control Considering System Uncertainties. Int. Journal of Engineering Research and Applications, 5(5), 42-47.
6. Ali, S. S., & Prasad, B. V. V. S. (2017). Secure and energy aware routing protocol (SEARP) based on trust-factor in Mobile Ad-Hoc networks. Journal of Statistics and Management Systems, 20(4), 543–551. https://doi.org/10.1080/09720510.2017.1395174
7. Onyema, E. M., Balasubaramanian, S., Iwendi, C., Prasad, B. S., & Edeh, C. D. (2023). Remote monitoring system using slow-fast deep convolution neural network model for identifying anti-social activities in surveillance applications. Measurement: Sensors, 27, 100718.
8. Syed, S. A., & Prasad, B. V. V. S. (2019, April). Merged technique to prevent SYBIL Attacks in VANETs. In 2019 International Conference on Computer and Information Sciences (ICCIS) (pp. 1-6). IEEE.
9. Patil, P. D., & Chavan, N. (2014). Proximate analysis and mineral characterization of Barringtonia species. International Journal of Advances in Pharmaceutical Analysis, 4(3), 120-122.
10. Desai, Mrunalini N., Priya D. Patil, and N. S. Chavan. “ISOLATION AND CHARACTERIZATION OF STARCH FROM MANGROVES Aegiceras corniculatum (L.) Blanco and Cynometra iripa Kostel.” (2011).
11. Patil, P. D., Gokhale, M. V., & Chavan, N. S. (2014). Mango starch: Its use and future prospects. Innov. J. Food Sci, 2, 29-30.
12. Priya Patil, D., N. S. Chavan, and B. S. Anjali. “Sonneratia alba J. Smith, A Vital Source of Gamma Linolenic Acid (GLA).” Asian J Pharm Clin Res 5.1 (2012): 172-175.
13. Priya, D., Patil, A., Niranjana, S., & Chavan, A. (2012). Potential testing of fatty acids from mangrove Aegiceras corniculatum (L.) Blanco. Int J Pharm Sci, 3, 569-71.
14. Priya, D., Patil, A., Niranjana, S., & Chavan, A. (2012). Potential testing of fatty acids from mangrove Aegiceras corniculatum (L.) Blanco. Int J Pharm Sci, 3, 569-71.
15. Patil, Priya D., and N. S. Chavan. “A comparative study of nutrients and mineral composition of Carallia brachiata (Lour.) Merill.” International Journal of Advanced Science and Research 1 (2015): 90-92.
16. Patil, P. D., & Chavan, N. S. (2013). A need of conservation of Bruguiera species as a famine food. Annals Food Science and Technology, 14, 294-297.
17. Bharathi, G. P., Chandra, I., Sanagana, D. P. R., Tummalachervu, C. K., Rao, V. S., &Neelima, S. (2024). AI-driven adaptive learning for enhancing business intelligence simulation games. Entertainment Computing, 50, 100699.
18. Nagarani, N., et al. “Self-attention based progressive generative adversarial network optimized with momentum search optimization algorithm for classification of brain tumor on MRI image.” Biomedical Signal Processing and Control 88 (2024): 105597.
19. Reka, R., R. Karthick, R. Saravana Ram, and Gurkirpal Singh. “Multi head self-attention gated graph convolutional network based multi‑attack intrusion detection in MANET.” Computers & Security 136 (2024): 103526.
20. Meenalochini, P., R. Karthick, and E. Sakthivel. “An Efficient Control Strategy for an Extended Switched Coupled Inductor Quasi-Z-Source Inverter for 3 Φ Grid Connected System.” Journal of Circuits, Systems and Computers 32.11 (2023): 2450011.
21. Karthick, R., et al. “An optimal partitioning and floor planning for VLSI circuit design based on a hybrid bio-inspired whale optimization and adaptive bird swarm optimization (WO-ABSO) algorithm.” Journal of Circuits, Systems and Computers 32.08 (2023): 2350273.
22. Jasper Gnana Chandran, J., et al. “Dual-channel capsule generative adversarial network optimized with golden eagle optimization for pediatric bone age assessment from hand X-ray image.” International Journal of Pattern Recognition and Artificial Intelligence 37.02 (2023): 2354001.
23. Rajagopal RK, Karthick R, Meenalochini P, Kalaichelvi T. Deep Convolutional Spiking Neural Network optimized with Arithmetic optimization algorithm for lung disease detection using chest X-ray images. Biomedical Signal Processing and Control. 2023 Jan 1;79:104197.
24. Karthick, R., and P. Meenalochini. “Implementation of data cache block (DCB) in shared processor using field-programmable gate array (FPGA).” Journal of the National Science Foundation of Sri Lanka 48.4 (2020).
25. Karthick, R., A. Senthilselvi, P. Meenalochini, and S. Senthil Pandi. “Design and analysis of linear phase finite impulse response filter using water strider optimization algorithm in FPGA.” Circuits, Systems, and Signal Processing 41, no. 9 (2022): 5254-5282.
26. Kanth, T. C. (2024). AI-POWERED THREAT INTELLIGENCE FOR PROACTIVE SECURITY MONITORING IN CLOUD INFRASTRUCTURES.
27. Karthick, R., and M. Sundararajan. “SPIDER-based out-of-order execution scheme for HtMPSOC.” International Journal of Advanced Intelligence paradigms 19.1 (2021): 28-41.
28. Karthick, R., Dawood, M.S. & Meenalochini, P. Analysis of vital signs using remote photoplethysmography (RPPG). J Ambient Intell Human Comput 14, 16729–16736 (2023). https://doi.org/10.1007/s12652-023-04683-w
29. Selvan, M. A., & Amali, S. M. J. (2024). RAINFALL DETECTION USING DEEP LEARNING TECHNIQUE
ABSTRACT:
This research explores the synergy of cybersecurity and network architecture to address insider threats in cloud environments. As insider attacks become more sophisticated, traditional security methods often fail to provide adequate protection. This study focuses on advanced solutions like anomaly detection and behavioral analysis to strengthen cloud security. These techniques help organizations detect unusual patterns and monitor user behavior, enabling faster threat identification. We highlight how integrating these technologies into cloud systems can significantly reduce the risk of data breaches. By aligning cybersecurity strategies with robust network design, organizations create a stronger defense against internal attacks. The paper also presents practical implementation insights and showcases recent advancements in cloud protection. Through case studies and analysis of emerging trends, we provide a clear path to securing cloud environments. This work aims to empower organizations to better protect sensitive data by leveraging the powerful combination of behavioral analytics and strategic network architecture.
INTRODUCTION:
Cloud computing continues to reshape IT infrastructure with its flexibility, scalability, and efficiency. However, it also brings new security challenges, especially from insider threats. These threats come from within the organization—such as employees or contractors—and can be either intentional or accidental. Unlike traditional systems, cloud environments require a different approach due to their distributed nature and shared responsibility between providers and users. As a result, older security methods often fall short. To tackle this, organizations must adopt smarter tools like anomaly detection and behavioral analysis. These methods monitor user behavior and system patterns to spot unusual activities early. The synergy of cybersecurity and network architecture plays a vital role here. A well-designed network, aligned with modern cybersecurity strategies, strengthens an organization’s ability to identify and block internal threats. This introduction provides the foundation for a detailed discussion on these approaches, their implementation in cloud settings, and the best practices to improve cloud security.

